National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Influence of Deep Levels on Charge Transport in CdTe and CdZnTe
Dědič, Václav
CdTe and CdZnTe are promising materials for room temperature semiconductor X-ray and gamma ray detectors. The accumulation of a space charge at deep energy levels due to a band bending at contacts with Schottky barriers and due to trapped photogenerated charge may result in time dependent change of charge collection efficiency in CdTe and CdZnTe detectors known as polarization effect. This thesis is mainly focused on a study of electric field profiles in detectors under dark and high photon flux conditions simulating detector operation using crossed polarizers technique exploiting the electro-optic (Pockels) effect. It also deals with a study of deep levels responsible for the polarization and influence of contact metals on charge accumulation. Several experimental results are supported by theoretical simulations. The measurements were performed on three sets of samples equipped with different contact metals (Au, In) cut from three different n-type CdTe and CdZnTe materials. Energy levels were detected using methods based on the Pockels effect and discharge current measurements. Detailed study of internal electric field profiles has revealed a fundamental influence of near midgap energy levels related to crystal defects and contact metals on the polarization in semiconductor detectors under high radiation...
Influence of Deep Levels on Charge Transport in CdTe and CdZnTe
Dědič, Václav ; Franc, Jan (advisor) ; Oswald, Jiří (referee) ; Štekl, Ivan (referee)
CdTe and CdZnTe are promising materials for room temperature semiconductor X-ray and gamma ray detectors. The accumulation of a space charge at deep energy levels due to a band bending at contacts with Schottky barriers and due to trapped photogenerated charge may result in time dependent change of charge collection efficiency in CdTe and CdZnTe detectors known as polarization effect. This thesis is mainly focused on a study of electric field profiles in detectors under dark and high photon flux conditions simulating detector operation using crossed polarizers technique exploiting the electro-optic (Pockels) effect. It also deals with a study of deep levels responsible for the polarization and influence of contact metals on charge accumulation. Several experimental results are supported by theoretical simulations. The measurements were performed on three sets of samples equipped with different contact metals (Au, In) cut from three different n-type CdTe and CdZnTe materials. Energy levels were detected using methods based on the Pockels effect and discharge current measurements. Detailed study of internal electric field profiles has revealed a fundamental influence of near midgap energy levels related to crystal defects and contact metals on the polarization in semiconductor detectors under high radiation...
Influence of Deep Levels on Charge Transport in CdTe and CdZnTe
Dědič, Václav
CdTe and CdZnTe are promising materials for room temperature semiconductor X-ray and gamma ray detectors. The accumulation of a space charge at deep energy levels due to a band bending at contacts with Schottky barriers and due to trapped photogenerated charge may result in time dependent change of charge collection efficiency in CdTe and CdZnTe detectors known as polarization effect. This thesis is mainly focused on a study of electric field profiles in detectors under dark and high photon flux conditions simulating detector operation using crossed polarizers technique exploiting the electro-optic (Pockels) effect. It also deals with a study of deep levels responsible for the polarization and influence of contact metals on charge accumulation. Several experimental results are supported by theoretical simulations. The measurements were performed on three sets of samples equipped with different contact metals (Au, In) cut from three different n-type CdTe and CdZnTe materials. Energy levels were detected using methods based on the Pockels effect and discharge current measurements. Detailed study of internal electric field profiles has revealed a fundamental influence of near midgap energy levels related to crystal defects and contact metals on the polarization in semiconductor detectors under high radiation...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.